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Abstract

It has been shown that piezoelectric materials are highly promising as passive electromechanical vibration absorbers

when shunted with electrical networks. However, these passive devices have limitations that restrict their practical

applications. The main goal of this study is to develop an innovative approach for achieving a high performance adaptive

piezoelectric absorber—an active–passive hybrid configuration. This investigation addresses the first application of the

concept of hierarchy for controlling fuzzy systems in such an active–passive absorber. It attempts to demonstrate

the general methodology by decomposing a large-scale system into smaller subsystems in a parallel structure so that the

method developed here can be applied for studying complex systems. The design of the lower-level controllers takes into

account each subsystem ignoring the interactions among them, while a higher-level controller handles subsystem

interactions. One of the main advantages of using a hierarchical fuzzy system is to minimize the size of the rule base by

eliminating ‘‘the curse of dimensionality’’. Therefore, the computational complexity in the process can be reduced as a

consequence of the rule-base size reduction. Although the performance of the optimal passive absorber is already much

better than the original system (no absorber), the intelligent active–passive absorber can still significantly outperform the

passive system.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Reducing the vibrations of structures using piezoelectric damping materials has long been a subject of study
in the fields of aeronautical, mechanical, and civil engineering. As a consequence, interest in the use of
piezoelectric materials as actuators and sensors for controlling vibrations in flexible structures has also
increased. Piezoelectric materials provide inexpensive, reliable, and nonintrusive means of actuating and
sensing vibrations in flexible structures.

The French scientists Pierre and Paul-Jacques Curie discovered piezoelectricity in 1880. An electric voltage
or change in electric voltage is generated when a mechanical force is applied to a piezoelectric material.
However, when an electric field is applied to such a material, a mechanical force is induced by the converse
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A system matrix
Ab cross-sectional area of the beam
B2 control matrix
bs width of the beam and PZT
C damping matrix of the system
Cp

s capacitance of the piezoelectric under
constant strain

E Young’s modulus
f̂ external disturbance vector
hb distance from the beam neutral axis to

the outside surface of the beam
hs distance from beam neutral axis to the

outside surface of the PZT
h31 piezoelectric constant
I moment of inertia
K stiffness matrix of the system

Kc coupling vector (conversion from me-
chanical energy to electrical energy)

l length of beam
Lp passive inductance of the shunt circuit
LT total number of levels in the hierarchy
M mass matrix of the system
qi(t) modal displacement
Qp charge on the piezoelectric
Rp passive resistance of the shunt circuit
uF final control action
ui control action obtained by consulting the

ith level rule set
Vc control voltage
b33 dielectric constant of PZT
r linear mass density of the beam
fi(x) normalized mode shapes function
mAi
ðxÞ membership functions

n Poisson’s coefficient
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piezoelectric effect. Recent advances in piezoelectric actuators, based on the converse piezoelectric effect, have
great potential for the active control of vibrations, especially for suppressing or isolating vibrations [1–6].

Numerous applications exist in which the addition of passive vibration damping to a structural system can
significantly improve system performance or stability. Piezoelectric materials have been shown to have
potential as passive electromechanical vibration absorbers when shunted with electrical networks.
Piezoelectric transducers (PZTs), in conjunction with appropriate circuitry, can serve as a mechanical energy
dissipation device. By placing electrical impedance across the terminals of the PZT, the passive network is
capable of damping structural vibrations. If a simple resistor is placed across the terminals of the PZT, the
PZT will act as a viscoelastic damper. If the network consists of a series inductor-resistor R–L circuit, the
passive network combined with the inherent capacitance of the PZT creates a damped electrical resonance.
The resonance can be tuned so that the PZT element acts as a tuned vibrational energy absorber [7]. The
damping methodology is commonly referred to as passive shunt damping. Passive shunt damping is regarded as
a simple, low cost, lightweight, and easily implemented method of controlling structural vibrations.
A desirable property of passive shunt damping is that the controlled system is guaranteed to be stable in the
presence of structural uncertainties.

Flexible mechanical structures have an infinite number of resonant frequencies (or structural modes). If the
tuned energy absorber were used to minimize a number of modes, one would need an equal number of PZT
patches and shunting circuits. This is clearly impractical.

In order to alleviate problems associated with single mode damping, multimode shunt damping
has been introduced; specifically, the use of a piezoelectric patch to damp several structural modes.
Therefore, Ref. [8] reports a method of damping multiple vibration modes using a single PZT. Furthermore,
[9] proposes a new approach for the optimization and implementation of multimode piezoelectric shunt
damping systems. A synthetic impedance, consisting of a voltage-controlled current source and a digital signal
processor system, is used to synthesize the terminal impedance of a shunt network. By modeling the
compound system, an optimization problem has been formulated that minimizes the H2 norm of the resulting
system.

Recently, the concept of semi-active piezoelectric absorbers to suppress harmonic excitations with time-
varying frequencies has also been proposed. Owing to their active and passive damping features, piezoelectric
materials have been explored to determine their active–passive hybrid control abilities, advantageous to both
passive and active systems. Hence, Ref. [10] outlines new insights derived from analyzing the active–passive
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hybrid piezoelectric network (APPN) concept. The integrated APPN design is more effective than a system
with separated active and passive elements.

Although of considerable potential, these semi-active devices have limitations that restrict their
practical application. For instance, the variable capacitor method [11] limits the tuning of the
piezoelectric absorber to a relatively small frequency range. Accordingly, an approach proposing a high-
performance active–passive alternative to semi-active absorbers is shown in Ref. [5]. Furthermore, the
effectiveness of this new absorber design is first demonstrated through experimental investigations, as
indicated in Ref. [6].

The studies noted above fail to provide any examples of the application of the fuzzy control theory in
active–passive vibration absorption using a hierarchical concept. Consequently, this study develops an
innovative approach for achieving a high-performance adaptive piezoelectric absorber—an active–passive
hybrid configuration. In the following discussion, the rules are structured hierarchically to ensure that the total
number of rules is a linear function of the number of system variables. A methodology for designing fuzzy
controllers is examined, and system performance is measured and expressed using fuzzy variables. In fuzzy
control, the hierarchy is also effective in structuring the rules to make the fuzzy controller appropriate for a
relatively large system.

2. Modeling the compound system

This section sketches how the dynamics of a piezoelectric laminate beam, as illustrated in the following
figure, can be derived.

Fig. 1 schematically illustrates the proposed system, which consists of a piezoelectric actuator integrated
with an active voltage source in series with an RL circuit. The elastic deflection of a beam is described by the
one-dimensional Bernoulli–Euler beam equations, described below:

q2

qx2
EI

q2yðx; tÞ
qx2

� Cavaðx; tÞ

� �
þ rAb

q2yðx; tÞ

qt2
¼ 0, (1)

where E, I, Ab, and r represent the Young’s modulus, moment of inertia, cross-sectional area, and linear mass
density of the beam, respectively. The additional term is due to the moment applied to the neutral axis of the
beam by the actuator piezoelectric layer, i.e., Ma ¼ Cavaðx; tÞ, where Ca is a constant dependent on the
actuator properties [9].

This study assumes that each piezoelectric patch is very thin and the beam deflects only in the y-axis.
Using the modal analysis techniques, the position function y(x,t), can be expanded as an infinite series
Voltage source

Sensor Piezo actuator

Structure

Resister

Inductor

Controller

Fig. 1. Adaptive structure with active–passive hybrid piezoelectric networks.
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of the form [12–15]

yðx; tÞ ¼
X1
i¼1

fiðxÞqiðtÞ, (2)

where fi(x) denote the normalized mode shapes function and qi(t) represent the modal displacements.
In this investigation, the system considered is a general mechanical structure that is integrated with a

piezoelectric actuator. Additionally, it will also be assumed that the local vibration in the structure is detected
using a piezoelectric sensor. The actuator is connected to an RL circuit as well as an active voltage source. This
study assumes that the model of the structure and the piezoelectric absorber can be obtained, either
analytically or experimentally, in the form displayed in Eq. (3):

M €qþ C _qþ Kqþ KcQ ¼ F̂ � f ðtÞ;

Lp
€Qp þ Rp

_Qp þ
1

Cs
p
Qp þ KT

c q ¼ V c;
(3)

where q, _q and €q, are vectors of generalized displacement, velocity, and acceleration [5].
Moreover, the matrices M, C, and K are the mass, damping, and open-circuit stiffness matrices of the

system; Lp and Rp are the passive inductance and resistance of the shunt circuit, Qp denotes the charge on the
piezoelectric, Cs

p represents the capacitance of the piezoelectric under constant strain, and Vc is the control
voltage. The coupling vector Kc represents the conversion from mechanical energy to electrical energy and
vice versa.

Furthermore, Cs
p and KT

c can be defined separately as [10]

Cs
p ¼

bsðx2 � x1Þ

b33ðhs � hbÞ
, (4)

KT
c ¼

h31ðh
2
s � h2

bÞ

2ðx2 � x1Þ
½f0ðx2Þ � f0ðx1Þ�, (5)

where bs denotes the width of the beam and PZT, hb represents the distance from the beam neutral axis to the
outside surface of the beam, and hs is the distance from the beam neutral axis to the outside surface of the
PZT. Additionally (x2�x1) is the length of the PZT, h31 denotes the piezoelectric constant and b33 represents
the dielectric constant of PZT.

Hence, the system can be expressed in a standard state-space form

_x ¼ AðRp;LpÞxþ B1f̂ þ B2ðRp;LpÞu, (6)

where x denotes the state vector, u is the control input, f̂ represents the external disturbance vector. The
system matrix, A, and the control matrix, B2, are functions of the passive resistance and inductance.

This study defined,

x ¼ ½ q Q _q _Q �T,

A ¼

0 0 1 0

0 0 0 1

�M�1K �M�1Kc �M�1C 0

�KT
c =Lp �Cs

p=Lp 0 �Rp=Lp

2
66664

3
77775,

B1 ¼ ½ 0 0 M�1F̂ 0 �T,

B2 ¼ ½ 0 0 0 1=Lp �T.

The system described above has (n+1) modes. The (n+1)th mode is due to the passive circuit. Significantly,
the addition of an active absorber of this type to a principal system results in a combined system with
an added degree of freedom. Because the comparison functions in the expansion are chosen to be the
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eigenfunctions of a cantilever beam, the ith generalized coordinate closely resembles the ith structural modal
coordinate (i ¼ 1, 2, 3,y,n). Moreover, for obvious reasons the infinite-order model produced by the model
analysis techniques is not suitable for use in the optimization. Consequently, to perform the optimization, an
accurate model of the system is required. The following section proposes an optimization approach for
determining appropriate values for the shunt circuit.

3. Determining the shunting circuit via optimization

For easy comparison with the active–passive hybrid system, instead of using the classical procedure to find
the optimal passive resistance and inductance, a different method is used. However, the concept and results are
quite similar to those proposed in Refs. [7,10]. Hence, the state space form for the passive damping can express
the system equations:

_x ¼ AðRp;LpÞxþ B1 f̂ . (7)

Here, the control action u is not included since this system is a passive system. This investigation
mathematically represents the disturbances as a stochastic process, which is modeled as the output of a linear
system driven by white noise. Thus, this study assumes that f̂ ðtÞ is given by

f̂ ðtÞ ¼ Dd ðtÞxdðtÞ. (8)

Here, xd(t) is the solution of

_xd ðtÞ ¼ Ad ðtÞxdðtÞ þ BdwðtÞ, (9)

where w(t) is white noise. This work further assumes that both x(t0) and xd(t0) is stochastic variables.
Moreover, the mean and spectral density of w(t) are given by E[w(t)] ¼ 0 and E½wðtÞwTðtÞ� ¼ V ðtÞdðt� tÞ; E[d]
is the expectation operator.

This study combines the description of the system and the disturbances by defining an augmented state
vector ~xðtÞ ¼ ½ xðtÞ xdðtÞ �T, and the overall system state equations become

_~x ¼
AðtÞ DdðtÞ

0 AdðtÞ

" #
~xþ

0

Bd

" #
wðtÞ ¼ Aa ~xþ BawðtÞ. (10)

This investigation now turns its attention to the optimization criteria. The deterministic regulator problem
considered the cost function

Jt ¼ lim
t!1

E½ ~xTQ ~x�, (11)

where Q represents a nonnegative definite weighting matrix. Here, ~xTQ ~x represents the overall structure
energy.

Moreover, the system response consists of a state vector with zero mean and a variance given by the solution
ð ~PÞ to the Lyapunov function

AT
a
~Pþ ~PAa þQ ¼ 0. (12)

This equation leads to the following constrained optimization problem:

R� ¼ arg min
s:t:g¼0

J, (13)

where g ¼ AT
a
~Pþ ~PAa þQ.

With a given set of passive parameters (R and L), the cost function L is

L ¼ trðBaDdBT
a
~PÞ. (14)

Notably, for each set of the passive control parameters R and L, there exists an optimal control with a
corresponding minimized cost function. A sequential quadratic programming algorithm [17] can be used to
determine the resistance and inductance that further minimizes J.
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Notably, shunting the piezoelectric does not preclude using the shunted element as an actuator in an active
control system, but rather modifies the passive characteristics of the actuator. Modifying the passive stiffness
of the piezoelectric to include material damping can introduce perfectly collocated damping into the system.
This passive damping can be useful in stabilizing controlled structures in which a mechanical actuator is
passively damped.

4. Active–passive control law design

Since the resistor Rp and inductor Lp values are chosen here to optimize the passive system, it is not obvious
that they will be best for maximizing the active action. For example, while the resistor is designed to dissipate
the structural vibration energy, it can simultaneously dissipate the control power from the active element. That
is, the resistor reduces the active authority of the actuator. However, passive control is economical but can
only control the vibration up to a certain limit. On the other hand, an active control operates with external
energy continuously supplied. Stated differently, this study is applying active control on an optimized (tuned
circuit) passive system.

Accordingly, a scheme is synthesized to concurrently incorporate the passive elements and the active control
law. The proposed approach ensures that the active and passive elements are configured in a systematic and
integrated manner.

4.1. Analysis of hierarchical fuzzy system

Traditional linear quadratic regulator (LQR) synthesis methods are known to guarantee stability margins.
Unfortunately, these characteristics only hold for large-scale systems under some limited conditions. One of
the most important deficiencies of such large-dimensional systems is the computational impractically of the
direct application of LQR methodology. This impracticality is due to the presence of several complexities of
the system, such as its large dimensions, nonlinearities, coupling, time delays, and the physical separation of its
components. Moreover, this controller requires a mathematical model and assumes that all of the system
parameters are known.

Eq. (2) shows that the beam vibration system is an infinite series form. However, it must be approximated
by a lower-order model and controlled by a finite-order controller because of limitations of the onboard
computer, the inaccuracy of sensors and noise of the system. Additionally, the large-scale system has been
limited to a reduced-order truncated system. Through this process, by virtue of linearization, delay
approximation, decomposition, and model reduction, each step and/or assumption has introduced
a degree of uncertainty into the system, moving the model away from the true physical situation. The
above discussion brings up another point, namely that frequent, simplifying assumptions make the problem
at hand too uncertain to be of practical use. The design and analysis of a large-scale system should be
based on the best available knowledge instead of the simplest available model to treat system uncertainties.
Therefore, a large-scale system is better treated via knowledge-based methods such as fuzzy logic, neural
networks, etc. [18].

Fuzzy control has become a very popular approach to controller design because it enables human skills to
be transferred into linguistic rules. Consequently, fuzzy control has frequently been applied to poorly defined
systems or systems without mathematical models. Moreover, fuzzy controllers afford a simple and robust
framework for specific nonlinear control laws that accommodate uncertainty and imprecision.

The design of fuzzy controllers is often a time-consuming activity that depends on knowledge acquisition,
the definition of the controller structure, and the definition of rules and other parameters. Currently, an
important issue related to fuzzy logic systems is the reduction of the total number of rules and their
corresponding computational demands. This section addresses the concept of hierarchies in fuzzy control
systems [14].

One of the main purposes of using a hierarchical fuzzy system is to minimize the size of rule base by
eliminating ‘‘the curse of dimensionality’’. Furthermore, the computational complexity in the process can be
reduced as a consequence of the rule-base size reduction, which has become one of the main concerns among
system designers. As the application domain of fuzzy control expands from simple systems to more complex
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systems, a serious limit on the standard fuzzy controller arises as the number of rules in a standard fuzzy
controller increases exponentially with the number of variables involved. Given n variables and m fuzzy sets
defined for each variable, mn rules are required to generate a complete fuzzy controller. As n increases, the rule
base quickly overloads the memory and makes the fuzzy controller difficult to implement. The concept of the
‘‘hierarchical rule set’’ is elucidated to overcome this problem. Given this hierarchical structure, the number of
rules increases linearly (not exponentially) with the number of system variables. Therefore, when considering a
complex system with more state variables, employing hierarchical techniques to study fuzzy logic control can
significantly reduce the complexity of the design of the rule base [14–22].

Hierarchical fuzzy control contains several level rule sets. The first-level rule set gives a basic control
action, while the higher-level rule sets initiate fine tuning control action based on the base (gross) control
action. Generally, the first-level rule set depends upon only a few important system variables, while
the higher-level rule sets rely on a larger number of system variables. Each controller aims at the global
behavior of the reference FLC, regardless of the missing information from the other inputs. To avoid
initiating an undesirable control action, the final control action should mainly depend on the first-level rule set
in the event of system parameter perturbation. Furthermore, for such a fuzzy system illustrated in Fig. 2,
with four variables and seven fuzzy sets (labels), the number of rules is reduced from 74 ¼ 2401 to
72+72+72 ¼ 147, indicating a 93.88% reduction. Clearly, depending on how many flexible modes can be
fused and in what order when these modes are put into a hierarchical structure, the size of the rule base is
reduced differently.

4.2. Fuzzy control structure of the system

The ultimate goal of controller design for a structure is to regulate structural vibration to a desired level by
providing a proper driving actuator. The complexity increases when the example is extended to a larger system
and when it involves more complicated modes and many more sensors and actuators. The strategy developed
here is to combine the hierarchical fuzzy control theory with the passive system parameter values.

Typical hierarchical techniques divide the complex system into several subsystems, which may interact with
one another. This study attempts to demonstrate the general methodology by dividing a large-scale system
into smaller subsystems in a parallel structure so that the method developed here can be applied for studying
complex systems [16].
Subsystem 1 Subsystem 2

Plant

FLC2,1

FLC1,2FLC1,1

∑

u1 u2

w1 w2

uF

Lower lever
(basic action)

Upper level
coordinator

(supervisory)

product product

Fig. 2. Implementation of hierarchical fuzzy controller.
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The design of the local controllers takes into account each subsystem, ignoring the interactions among
them, while a higher-level controller handles subsystem interactions. Fig. 2 illustrates the employment of the
hierarchical technique for the system.

For such a case, the hierarchical fuzzy controller suppresses vibrations in a flexible structure using
piezoelectric actuators. Typically, the response of a beam is dominated by the lower (1st, 2nd, 3rdy) modes.
Consequently, few flexible retained modes are selected for the system in an approximate dynamic model.

To implement the proposed technique, the system is decomposed into two subsystems: the first subsystem
takes qf1 and _qf 1 as local variables, while the second subsystem takes qf2 and _qf 2 as local variables. Hence, in
the proposed hierarchical fuzzy control structure, the first subsystem rules are those associated with the first
flexible mode, and its derivatives are used to generate the first-level hierarchy. The second most dominant
mode and its derivative are selected as inputs to another fuzzy controller at the same level, and so on.

The fuzzy logic controller FLC1 takes qf1 and _qf 1 as inputs to generate the local control action u1 while fuzzy
logic controller FLC2 takes qf2 and _qf 2 to generate another control action u2. Thus, at the local level, each
subsystem is designed separately. The fuzzy logic rule base for each subsystem is designed based on the
dynamic response of each mode when a control force is activated on the flexible system.

At the upper level, the information from each subsystem is taken as an input to the coordinator. The
coordinator, which is based linguistic syntax variables of system performance adjusts the weighting factors of
the hierarchical fuzzy controller to achieve a better performance in case of changes in system parameters.
To coordinate the local subsystems, the upper level FLC takes qf1 and qf 1 � qf 2 and _qf 1 � _qf 2 as inputs to
generate the weighting functions w1 and w2. Hence, the upper level controller monitors these differences and
causes the supervisory decision to be fed to the lower level. The weight factors w1 and w2 generated by the
supervisory fuzzy logic controller are multiplied with the local controls u1 and u2. These are then summed to
form the total control uF for feeding back to the flexible beam. Furthermore, the weighting factor (output
scaling factor) is self-regulated during the control process, and can optimize the gain for the hierarchical fuzzy
controller [23].

In particular, it is assumed that higher levels in the hierarchy, that is planning and supervision deal with a
more abstract view of the control problem and to do so in less precise terms. The proposed control structure
constructs the upper-level coordinator (supervisory) to deal with the model reduction error and makes the
supervisory decision to the lower level. In the design of the hierarchical fuzzy control structure, the lower level
controllers take into account each subsystem ignoring the interactions among them, while the higher-level
supervisory fuzzy rule set is used to adjust the weighting factors of the hierarchical fuzzy controller to achieve
better performance even in the case of unexpected changes in system parameters.

However, fuzzy logic may be best used to implement high level or supervisory functions in a hierarchically
structured intelligent control system. As depicted in Fig. 2, fuzzy logic control can appear at the higher levels,
and acts as the supervisory control or coordinator. Fuzzy logic offers a twofold advantage in this setting. First,
fuzzy logic can facilitate the synthesis of supervisory control strategies due partly to its ability to better
represent the semantics of linguistic terms and constructs often used in supervisory control strategies.

Second, because fuzzy logic-based control strategies can be viewed as nonlinear control strategies, analytical
study of the resulting hierarchical system can be facilitated [24].
4.3. Fuzzy logic controller design

4.3.1. Define input and output variables, fuzzy partition, and building the membership functions

Error and error change are two commonly used variables in fuzzy control. This study uses the vibration
states and their rate variables as inputs, with the voltage applied to the voltage amplifier as the output. Since
the fuzzy inference system handles smooth membership functions better than trapezoidal ones in vibration
control, bell-shaped functions are employed to convert these inputs and output variables into linguistic control
variables. Generally, mAi

ðxÞ is chosen as bell-shaped, with a maximum of 1 and a minimum of 0, such as

mAi
ðxÞ ¼ exp �

x� ci

ai

� �2
" #( )bi

, (15)
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Fig. 3. The viewer surface for the weighting factor w1 and w2.
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where fai; bi; cig denotes the parameter set. As the values of the parameters change, the bell-shaped functions
vary accordingly, thus exhibiting various forms of membership functions on linguistic label Ai. The fuzzy
partition of universes of discourse and the creation of the rule base were drawn from the criteria of skilled
operators.

The rule-base design of two subsystems is based on pre-simulation investigations. Fuzzy quantities such as
large negative (LN), medium negative (MN), small negative (SN), zero (ZE), small positive (SP), medium positive

(MP), large positive (LP), and so on, are used in the statements, and the corresponding membership functions
thus are needed. Moreover, in building the supervisory rule set, the knowledge of the on tuning weighting
factor, gained from the experience (or knowledge) of tuning the fuzzy logic controller, is used and stated as a
set of linguistic statements. For the present research, the same kind of fuzzy logic may also be applied for the
supervisory fuzzy tuning set to initiate a particular tuning action. The FLC coordinator has two inputs and
two outputs. Furthermore, the inference process of the coordinator is illustrated in the rule view of the window
of the fuzzy logic toolbox. The viewer surface for the weighting factor is presented in Fig. 3. Moreover, Fig. 4
displays the rule view of the upper level coordinator.
4.3.2. Composite control of the system

A hierarchical fuzzy approach is pursued which allows the adaptation of a composite control strategy. The
total (final) control action of the hierarchical fuzzy controller is composed of the control actions due to
different level rule sets; that is

uF ¼
XLT

i¼1

wiui, (16)

where LT denotes the total number of levels in the hierarchy and uF represents the final control action; ui is the
control action obtained by consulting the ith level rule set, and wi is the corresponding weighting factor.

The overall hierarchical fuzzy controller is implemented according to the block diagram in Fig. 5. The main
advantages of the hierarchical structure in Fig. 5 are a significant reduction of memory demand in the
implementation.
5. Results and discussion

This section applies the system model to examine the open-loop effects of the circuit parameters (resistance
and inductance) on the passive damping ability and active hierarchical fuzzy control authority of the
active–passive absorber. The example used in this section is identical to the cantilever beam system identified
in Section 2. A test apparatus was constructed, constituted of a flexible cantilever aluminum beam type
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Fig. 4. Rule view of the upper-level coordinator.

Voltage Source

sensor

piezoactuator

Active Fuzzy Controller

Passive Damping

y(x,t)

Fig. 5. Schematic diagram of the control experiment.
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structure with piezoelectric patches symmetrically bonded on both sides to provide structural bending.
Numerical results are obtained by the aforementioned methods for the following system parameters.

The tested beam is a uniform aluminum beam with a rectangular cross-section and experimentally fixed–free
boundary conditions. The structure consists of a 15-cm (l) long uniform and a rectangular cross-section
19mm� 3mm bs� hs. The common properties of the system parameters are

Young’s modulus ¼ 7:1� 1010 N=m2,

Density ¼ 2700 kg=m;

Poisson’s coefficient ¼ 0:36,

Piezoelectric constant of PZT ¼ 7:664� 108 N=C;

Dielectric constant of PZT ¼ 7:331� 107 Vm=C:

5.1. Case 1. Frequency responses

For the system described in the previous section, the overall structural response is a sum of the response
contributed from the excitation force f̂ and that contributed from the control voltage Vc. Fig. 6 plots the
measured midpoint deflection of the beam and the step excitation frequency responses. It compares the peak
magnitude with and without the shunt circuit. The resonant responses of the first two modes were reduced
considerably once the shunt circuit was introduced. That is, the RL circuit enhanced the passive damping
ability around the first resonant frequency. One may argue that such a circuit only can be shunted to one mode
to achieve damping. However, Fig. 6 appears to suggest that two modes have been damped and another
resonance has been introduced just before the second resonance. In order to explain this issue, some of the
viewpoints should be addressed in the following. It is important to realize that the addition of the RL circuit of
a principal system (Eq. (1)) results in a combined system (Eq. (3)) having an added degree of freedom.
Therefore, the passive absorber can be used to virtually eliminate vibration in systems in which it is
particularly undesirable, and to reduce excessive amplitudes of vibration in others. Nevertheless, the passive
damping capability of the second mode is slightly modify while applied the RL circuit. It means that the
passive damping ability of the second mode is not significant as the first mode in such case. Consequently,
while applied in one RL circuit only, it could be damped multimodes. However, only the first mode will be
damped significantly, then the second mode, and the other modes damping effect are trivially. Moreover,
another resonance was introduced before the second resonance is owing to the nonlinear effect and
measurement inaccuracy while the RL circuit applied (Fig. 7).
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Fig. 6. Frequency response with shunt circuit ð2500O� 79HÞ.
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Fig. 8. Frequency response of the controller (5000O� 22H).
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Fig. 7. Frequency response of the controller ð5000O� 79HÞ.
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The frequency response of the controller is illustrated in Figs. 8 and 9. The frequency response under passive
damping (open loop) and the control of the hierarchical fuzzy logic (closed loop) are presented. The controller
is observed to have a resonant structure, as expected. Moreover, the resonant response of the first two modes
was reduced over the entire beam due to the controller action. Table 1 lists the magnitude reduction at the first
resonance frequency for each specified RL circuit of the beam vibration. The table also lists the magnitude
reduction, such as the shift in the first resonant frequencies of the beam vibration. The simulation
demonstrates that the resonant responses (711.5 rad/s) of the first mode were reduced by around
11.26–30.85 dB when the shunt circuit was applied. Furthermore, compared to passive damping, the first
modal resonant magnitudes were reduced by up to 66.63 dB while the active controller was engaged. Notably,
the reduction in peak vibration amplitude was greater for the active–passive absorber than for passive
damping such as the shift in resonant frequencies. Hence, the controller reduced the resonant responses of the
structure by increasing the system damping at resonant frequencies. Moreover, as can be seen, the system
sensitivities to the active controller exceeded those for passive damping. As the resonant frequency reduced,
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Fig. 9. Vibration at the midpoint of the beam ð2500O� 79HÞ.

Table 1

Magnitude reduction at the first resonant frequency

Type/RL Reduction 1

(711.5 rad/s) (dB)

Reduction 2

(711.5 rad/s) (dB)

Reduction 1

(259.4 rad/s) (dB)

Reduction 2

(259.4 rad/s) (dB)

Reduction 1

(850.4 rad/s) (dB)

Reduction 2

(850.4 rad/s) (dB)

1500O� 22H 11.26 66.63 11.18 74.76 11.33 65.07

2500O� 22H 14.7 63.2 14.62 71.32 14.75 61.63

5000O� 22H 19.89 58.01 19.80 66.14 19.96 56.44

1500O� 79H 20.94 56.48 20.17 63.78 21.20 54.82

2500O� 79H 25.07 52.36 24.29 59.65 25.33 50.68

5000O� 79H 30.85 46.85 30.07 53.87 31.12 44.91

Note: Reduction 1: (uncontrolled)�(passive); Reduction 2: (passive)�(active+passive); first resonant frequency on1 ¼
1:875

l

ffiffiffiffi
EI
r

q
(for cantilever beam [25]).
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the magnitude reduction increased In contrast, the magnitude reduction decreased with increasing resonant
frequency. Therefore, the proposed fuzzy controllers afford a simple and robust framework for resonant
frequency shift.

5.2. Case 2. Time responses

Figs. 9 and 10 plot the time response for vibrational displacement at the midpoint of a beam under an initial
excitation step for various resistance and inductance values. These indicate the effectiveness of the hierarchical
fuzzy controller in minimizing structural vibration in the time domain. The settling time of the position
response is considerably reduced by the fuzzy control action. It also demonstrates that the convergence rate is
faster than for passive damping when using the hierarchical fuzzy control techniques. Additionally, Figs. 9 and
10 also show the effectiveness of the controller effectiveness in minimizing beam vibration in the time domain.

Furthermore, Table 2 lists the normalized root-mean-square (rms) vibrational displacement at the midpoint
of a beam under uncontrolled, passive, and active–passive absorber for various resistance and inductance
values. Fig. 11 demonstrates the flexible modes response for qf 1 and qf 2 of the elastic beam with LQR and the
proposed hierarchical fuzzy controller. Evidently, a vibration reduction (%) for passive absorber is highly
dependent upon the resistance and inductance values with the shunt circuit. Moreover, a hierarchical fuzzy
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Fig. 10. Vibration at the midpoint of the beam ð2500O� 22HÞ.

Table 2

Normalized rms vibrational displacements at the midpoint of a beam

Type/RL Uncontrolled

(I)

Passive (II) Active+passive

(III) (LQR)

Active+passive

(IV) (fuzzy)

Reduction

(I–II)/I (%)

Reduction

(I–IV)/I (%)

Reduction

(II–IV)/II (%)

Reduction

(III–IV)/III (%)

1500O� 22H 4.6e�4 4.2e�4 3.0e�4 1.7e�4 8.7 63.0 59.5 43.3

2500O� 22H 4.6e�4 4.0e�4 2.8e�4 1.6e�4 13 65.2 60.0 42.9

5000O� 22H 4.6e�4 3.5e�4 2.7e�4 1.5e�4 23.9 67.4 57.1 44.5

1500O� 79H 4.6e�4 3.3e�4 2.5e�4 1.5e�4 28.3 67.4 54.5 40

2500O� 79H 4.6e�4 2.8e�4 2.2e�4 1.4e�4 39.1 69.6 50.0 36.4

5000O� 79H 4.6e�4 2.1e�4 2.0e�4 1.2e�4 54.3 73.9 42.9 40
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controller yields a more significant improvement in displacement reduction over that obtained by LQR
techniques which design techniques is shown in Appendix A.

One of the most important deficiencies for such a large-dimensional system is computational impractically
of the direct application of LQR methodology [18]. Therefore, it is very difficult to choose the weighting
matrix Q and R, and to solve a suitable feedback gain K to damp out the vibration modes in such a case. That
is why the LQR methodology only controls the vibration up to a certain limit just as shown in Table 2. As a
result, the proposed hierarchical fuzzy controller can damp out the vibration more quickly. In practice,
dynamical models of a flexible structure, as represented in Eq. (2) have to be truncated to represent a system
by a finite dimensional model. However, if the complex system were decomposed into several subsystems, the
model reduction error will introduce into the system. Traditional LQR has no way to cope with this point. It
needs to develop another modified design techniques while keeping the system model as realistic as possible
[18]. Fortunately, the proposed control structure constructs the upper-level coordinator (supervisory) to deal
with the model reduction error and makes the supervisory decision to the lower level. In the design of the
hierarchical fuzzy control structure, the lower-level controllers take into account each subsystem ignoring the
interactions among them, while the higher-level controller handles subsystem interactions. The upper-level
supervisory fuzzy rule set is used to adjust the weighting factors of the hierarchical fuzzy controller to achieve
better performance even in the case of unexpected changes in system parameters. In particular, it is assumed
that the higher levels in the hierarchy, that is planning and supervision deal with a more abstract view of the
control problem and do so in less precise terms.
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Table 2 also reveals that the proposed passive absorber reduces the displacement due to vibration of an
uncontrolled by approximately 8.7–54.37% at each specified RL circuit. Moreover, once again the
performance of the intelligent active–passive absorber is relatively unaffected by the change in the shunt
circuit parameters. The normalized RMS is around 1.2e�4 to 1.7e�4 when implementing the intelligent
active–passive absorber. Such a controller is observed to result in suppression of the transverse deflection of
the structure. Consequently, the active gain is updated with variation in passive parameters. That is,
simultaneously varying the values of the fuzzy control gains and passive parameters can obtain the
‘‘optimized’’ optimal control. Compared with the system with no absorber, the performance of the
intelligent active–passive absorber is considerably better than that of the passive damping in vibration
reduction. The active–passive piezoelectric absorber presented here may have the performance and
robustness required for such a case. Moreover, hierarchical control technique is a powerful and efficient
means to cope with complex systems. A complex system with more state variables, the employment of
hierarchical techniques in the study of fuzzy logic control can greatly reduce the complexity of the design of
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the rule base. Also, as provide in the large-scale systems theory, the parallel structure will reduce the
computation time.

6. Conclusions

It has been shown that piezoelectric materials can be used as passive electromechanical vibration absorbers
by shunting them with electrical networks. The active gain is updated with variation in the passive parameters.
That is, simultaneously varying the values of the control gains and passive parameters can obtain the
‘‘optimized’’ optimal control. This study addresses the first application of the concept of hierarchy for
controlling fuzzy systems in such active–passive absorbers. This research also demonstrates the feasibility of
using hierarchical fuzzy logic control in dealing with many mode dynamic system problems. Furthermore, the
main contribution of the hierarchical structure is a significant reduction in the amount of memory required for
implementation. Consequently, it is shown that the active–passive absorber not only can provide passive
damping, but can also enhance the active action authority. The proposed active–passive absorber is significant
compared with the passive baseline systems. Such an investigation could provide insight and design guidelines
for a new absorber system. The investigation results also demonstrate that the proposed design can
outperform one passive and one (LQR) active–passive vibration control methods while requiring less control
effort. The proposed fuzzy control method is quite useful in terms of reliability and robustness.
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Appendix A. Reduction of vibration using the linear quadratic regulator (LQR)

Principles of optimization are applied to the smart panel. An LQR is applied [12]. The aggregation
procedure is addressed from the perspective of optimal control. Consider the system equation (15)
_x ¼ Axþ B ~V , with a quadratic cost function

J ¼
1

2

Z 1
0

ðxTðtÞQxðtÞ þ ~V
T
ðtÞR ~V ðtÞÞdt, (A.1)

where A, B and x, are the system matrix, control matrix and state vector, respectively, and Q and R are
nonnegative and positive-definite matrices. The optimal control problem is to determine a control input ~V
such that Eq. (15) is satisfied while the cost function (A.1) is minimized.

The solution to this so-called ‘‘state regulator’’ is well known:

~V ðtÞ ¼ �R�1BTKxðtÞ, (A.2)

where K is the symmetric positive-definite matrix solution to the following algebraic matrix and Riccati
equation

KAþ ATK � KSK þQ ¼ 0, (A.3)

where

S ¼ BR�1BT.
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